
Evaluation of the EEBLS Algorithm
in STExTS Exoplanet Searches

Matt Heuser
University of Dallas

Department of Physics
May 2013

Thesis Advisors:
Richard Olenick, Ph.D.

Arthur Sweeney

Submitted in partial fulfillment of
the Bachelor of Science degree

at the University of Dallas

Abstract

Transiting exoplanets are too small to be observed by the naked

eye or by telescope. To detect these transits, other methods must

employed in place of direct observation. The method used to conduct

this research was photometry. The magnitude of approximately 3000

stars was measured over several weeks and then each star's magnitude

was analyzed for changes in magnitude. Many times, these changes in

magnitude are caused by a planet in orbit around the star passing

between the star and the observer. Stars which appear to show this

phenomenon are transit candidates.

In order to analyze the large amount of data gathered, a computer

algorithm was employed to automate this process. The algorithm was a

subroutine called EEBLS written in FORTRAN'77 by Géza Kovács at the

Hungarian Academy of Sciences' Konkoly Observatory. The algorithm

was used to develop a list of transit candidates.

Page i

Table of Contents

1 Introduction Page 1

2 Equipment Page 4

3 Data Acquisition Page 8

4 Methods Page 12

5 Algorithm Page 15

6 Results Page 17

7 Conclusion Page 27

8 References Page 28

9 Appendix A: EEBLS Subroutine Page 29

10 Appendix B: EEBLS Driver Page 35

11 Appendix C: SYSREM Page 38

Page ii

List of Figures

1.1 Brightness vs. time graph Page 2

1.2 Comparison of light curves Page 3

2.1 Telescope setup Page 5

2.2 Screenshot of CCD Soft Page 6

2.3 Screenshot of The Sky X Page 6

2.4 Screenshot of PHD Guiding Page 7

2.5 Screenshot of Nebulosity Page 7

3.1 Sample data image Page 11

4.1 Flow chart of image reduction process, phase I Page 13

4.2 Flow chart of image reduction process, phase II Page 14

6.1 Light curve for GSC 2083-1870 Page 18

6.2 Periodigram for GSC 2083-1870 Page 19

6.3 Phase Diagram for GSC 2083-1870 Page 20

6.4 Light curve for GSC 2084-0455 Page 21

6.5 Periodigram for GSC 2084-0455 Page 22

6.6 Phase diagram for GSC 2084-0455 Page 23

6.7 Light curve for GSC 2083-0557 Page 24

6.8 Periodigram for GSC 2083-0557 Page 25

6.9 Phase diagram for GSC 2083-0557 Page 26

List of Tables

2.1 Log of observations Page 9

2.2 Log of atmospheric conditions Page 10

6.1 Sample EEBLS output Page 17

Page iii

Acknowledgements

I wish to thank the University of Dallas and the Donald A Cowan Institute for

their support in this work.

Page iv

1 Introduction

A transit occurs when a planet crosses in front of a star in the field of view of an

observer on earth. When this happens, a small portion of the light emitted from the

star is blocked from reaching the observer. Consequently, the brightness of the star

decreases as the planet moves past the star, and then increases as the star exits,

passing the star. A star's brightness is measured and recorded over a period of time.

The processed data is then analyzed for episodes of reduction in the brightness.

These “dips” can indicate that a planet orbits the star, as shown in Figure 1.1.

The first extrasolar planet was discovered in this manner in 1995, orbiting a star

similar to our sun. Since then, many improvements have been made in the

astronomical equipment used to search for exoplanets. Currently, there are over 880

known extrasolar planets. It is estimated that 100 to 400 billion exoplanets exists in

the milky way galaxy alone. [1]

In March of 2009, the Kepler Project was launched by NASA for the purpose of

detecting potential life-supporting planets, orbiting stars outside the solar system.

Kepler is a space-based telescope that utilizes the transit method of planet detection.

The Kepler telescope has a diameter of 0.95 meters and a field of view of

approximately 10 degrees square. The satellite simultaneously monitors 100,000

stars brighter than 14th magnitude. [2]

Page 1

Eclipsing binaries can be detected in a similar way. When one of the stars

passes in front of the other one, the detected total magnitude appears to decrease to

an observer on earth. However, there are several differences between the light curve

of a binary and that of a transit: the decrease in magnitude in the light curve of a

binary star will be be much greater than a transit. The depth of the “drop” in

magnitude for an exoplanet transit is typically about 50 millimagnitudes. The binary

light curve will usually resemble the shape of the letter V whereas the transit light

curve will have a box-like shape. Figure 1.2 shows a comparison of an eclipsing binary

and an exoplanet transit.

Page 2

Figure 1.1: The brightness vs. time graph for a star
while a planet is transiting.

Page 3

Figure 1.2: Comparison of light curves for a
binary and a transit. The transit magnitude
decrease (blue) is more shallow and square than
the binary light curve (red).

2 Equipment

The primary telescope had a 6 inch diameter objective lens with a focal length

of 200 millimeters and an aperture of f/1.5 stopped down to f/2.8. An R-band filter

was used.

The secondary telescope, mounted on top of the main telescope, was an Orion

telescope which had a diameter of 80 millimeters. The secondary telescope was used

to guide the main scope with PHD Guiding, as shown in Figure 2.4, while the main

scope simultaneously acquired the data images using CCD Soft, as shown in Figure 2.2.

The primary CCD was a SBIG-ST10 which had a resolution of 3.2 mega-pixels

which produced images with a full frame resolution of 2184 x 1472 pixels. The SBIG

CCD included a temperature regulator which was controlled through CCD Soft.

Communication to the computer was through a USB 2.0 connection. Each telescope

also included a heater to prevent dew from forming on the lens. A German equatorial

mount was used.

Page 4

Page 5

Figure 2.1: Telescope setup showing the guide scope mounted on top of the main scope
and controlled by a German equatorial mount. The laptop (left) was used to retrieve and
store the images from the main telescope.

CCD Soft was used to capture images from the main scope camera and save

them to the hard drive of the computer. It was also used to control the temperature

of the camera, which was cooled to -20.0 degrees Celsius.

The Sky X provided relevant star charts and was used to control the mount and

point the telescope to the correct area of the sky.

Page 6

Figure 2.2: Screenshot of CCD Soft showing an image
being captured from on the main telescope.

Figure 2.3: Screenshot of The Sky X showing a star
map centered on SAO 85182.

Once the constellation Hercules was found, the telescope was centered on SAO

85182 and PHD Guiding, shown in Figure 2.4, was used to guide on that star during the

night.

Nebulosity, shown in Figure 2.5, was used to focus the main camera. The

camera was focused at least once every night to ensure clear images.

Page 7

Figure 2.4: Screenshot of PHD Guiding showing the
telescope being guided on the star SAO 85182.

Figure 2.5: Screenshot of Nebulosity just after being
focused on the center star, SAO 85182.

3 Data Acquisition

The research for this project took place in Pitkin, Colorado between May 21,

2012 and June 25, 2013. Pitkin is located on the western slopes of Colorado at an

elevation of 2809 meters. Data was taken every night that the weather permitted

from astronomical twilight until dawn. The relatively high altitude helped to reduce

air mass and the remote location allowed for minimized light pollution.

A total of 37 nights of data were taken, resulting in a total of 8535 data images.

Each image was taken with a 60 second integration time. The signal to noise ratio

varied for each image peaking at 100. Calibration images were taken at the beginning

and end of each night.

Page 8

Date Begin End Images Exposure (s)

05-21-12 0 3:50 220 60

05-22-12 22:56 5:28 321 60

05-23-12 00:39 5:11 205 60

05-24-12 22:48 5:20 213 60

05-25-12 22:38 4:55 308 60

05-27-12 22:59 5:01 297 60

05-28-12 22:55 4:59 303 60

05-29-12 23:45 5:40 292 60

05-30-12 23:12 5:39 309 60

05-31-12 23:12 5:29 177 60

06-01-12 23:04 5:51 337 60

06-05-12 23:06 5:27 317 60

06-06-12 22:45 4:05 266 60

06-07-12 22:26 5:09 343 60

06-08-12 22:50 4:58 306 60

06-09-12 22:32 5:27 344 60

06-10-12 22:38 5:23 339 60

06-11-12 22:31 5:21 342 60

06-12-12 22:30 4:50 317 60

06-13-12 22:27 5:31 352 60

06-14-12 23:25 5:03 273 60

06-15-12 23:02 4:59 298 60

06-16-12 22:33 5:05 323 60

06-17-12 23:28 5:00 286 60

06-18-12 22:33 5:00 324 60

06-19-12 22:50 5:07 315 60

06-20-12 22:54 5:18 320 60

06-21-12 23:15 5:36 318 60

06-22-12 23:07 4:59 292 60

06-23-12 23:06 5:40 306 60

06-24-12 23:57 4:48 243 60

06-25-12 22:46 5:31 331 60

Table 2.1: Log of observations.

Page 9

Date Condition

05-21-12 01:00 The sky is clear and there is almost no wind
04:00 The sky is clear and there is almost no wind

05-22-12 22:00 Clear sky with no wind

05-23-12 22:00 Sky is cloudy with a slight gusty wind
23:30 Clear sky with no wind
03:30 There are several large clouds in the sky but no wind
03:45 PHD Guiding has stopped tracking due to clouds

05-24-12 21:38 Clear sky no wind
11:00 No wind but clouds are starting to form
11:30 Clouds are blocking the stars but still no wind
01:40 Clouds have cleared and the wind is calm

05-25-12 21:30 A few scattered clouds in the sky with a slight wind

05-27-12 22:00 Sky is clear with a slight wind

05-28-12 22:00 Sky is clear with no wind

05-29-12 21:30 Thin clouds moving in and out of frame

05-30-12 22:00 Sky is partially covered with clouds. No wind
22:15 One large cloud is moving toward data star
22:20 Cloud wisps are present in the frame and a large cloud is moving toward field

05-31-12 22:00 A few scattered clouds, no wind
00:10 A large cloud is moving toward data star
00:20 Cloud has covered data star. Stopping images until sky clears

06-01-12 22:02 Clear sky

06-05-12 22:00 Clear sky, no wind

06-06-12 21:30 Clear Sky, no wind
02:00 A few small scattered clouds in the sky
03:10 Clouds have entered the field of view. Stopped taking images.

06-08-12 21:45 Clear sky, no wind

06-09-12 21:30 Clear Sky, no wind
01:45 Scattered clouds in the sky

06-11-12 21:30 Clear sky, no wind

06-12-12 21:00 Clear sky, no wind

06-14-12 21:00 Clouds cover most of the sky
22:30 Clear sky, no wind
00:55 Clouds moving into frame. Stopped taking images

06-15-12 21:30 Clouds covering the sky
22:00 Sky cleared, no wind
22:45 Scattered clouds, light wind

06-17-12 22:30 Clear sky, no wind

06-18-12 21:30 Clear sky, no wind

06-20-12 22:00 Clear sky, no wind

06-21-12 22:00 A few scattered clouds, no wind

06-23-12 22:00 Clear sky, no wind
22:35 Clouds entering frame. Stopping until it clears

06-24-12 21:30 Clouded sky. waiting until it clears
23:00 Clear sky, no wind

06-25-12 21:45 Clear sky, no wind

Table 2.2: Log of atmospheric conditions.

Page 10

The field of view of the telescope used was about 3 degrees, allowing data to

be captured on 2500 to 3000 stars. The center star in this field was SAO 85182 which

is within the Hercules constellation.

Page 11

Figure 3.1: Sample Data Image.

4 Methods

In order to identify possible transits in the images gathered, photometric

reduction of each image was completed. In photometry, the flux from a star is

measured from an image. Curves of magnitude versus time, known as light curves, are

then constructed and examined.

The period for a transit is typically several hours in length. With our telescope

and CCD, we were able to capture and record data points for the light curves of 2500

to 3000 stars approximately once per minute. Before photometric measurements

were made, the images were calibrated using SYSREM (see appendix C) and the stars

were extracted using SExtractor. Once the coordinates of the star were found, they

were compared with the Guide Star Catalogue (GSC) database to determine whether

or not they had been previously recorded. Figure 4.1 shows details of the data

pipeline. [3]

With light curves constructed for nearly 3000 stars, an algorithm was needed to

search for signals of possible transits. We used the EEBLS algorithm. [4]

Page 12

Page 13

Figure 4.1: Flow Chart of Image Reduction Process, Phase I.

Page 14

Figure 4.2: Flow Chart of Image Reduction Process, Phase II.

5 Algorithm

The algorithm used was the EEBLS, Edge Enhanced Box Least Squares. It is a

box-fitting least squares algorithm developed by Kovács at the Konkley Observatory

in Hungary. The algorithm analyzes the light curve data points for periods of reduced

magnitude and attempts to fit a box to any periodicity found. These “box” shaped

functions are composed of two step functions, that is, they alternate between a high

value and a low value. The low value represents the time in which the planet is

blocking some of the light from the star and the high value represents the time in

which no light is blocked.

This is in contrast to Fourier analysis where sinusoidal functions are fit to

curves. For a transit, the time it takes the planet to make the transition from no

magnitude reduction to full magnitude reduction is relatively small compared to the

total time it spends in full magnitude reduction. This characteristic makes a box least

squares algorithm more suitable for finding transits than Fourier analysis does.

In order to fit a box to a period, the magnitude data points are “folded” to the

period creating phase diagram. If a transit is observed, some fraction of the period

will have a lower magnitude than the rest of the period. The minimum and maximum

limits of this fraction are specified as input parameters.

The EEBLS algorithm developed by Kovács is a subroutine written in

FORTRAN'77. It was necessary to develop an additional driver program to read the

data files and input it into the subroutine. The decision was made to port the EEBLS

Page 15

algorithm to C and write the driver program in C because the team was more familiar

with C than FORTRAN. This program can be found in Appendix B.

The driver program (see Appendix B) written for the EEBLS subroutine reads a

text file containing a list of recorded star brightnesses and the Modified Julian Date

(MJD) when the brightness was recorded. The data files are stored in CSV format with

a single header row.

The driver program transfers the entire data file into arrays in memory, one

array for the MJD and arrays for as many columns as contain recorded magnitudes for

a star. The EEBLS subroutine is then called and these arrays are passed to it as input.

The output from the EEBLS subroutine is returned to the driver program and is

subsequently written to a text file in CSV format.

Page 16

6 Results

Table 6.1 is a sample of the output of the EEBLS algorithm. The data is sorted

by the depth of the magnitude reduction in the light curve of the transits candidate,

shown in Column D. Only candidates with negative depth are considered.

In Table 6.1, column A indicates the name of the star, usually from the Guide

Star Catalog (GSC). If the star was not found, a name was assigned beginning with UD.

Column B is the period of the transit at the maximum power. Column C gives the

power of the signal at the period in column B. Column D signifies the depth of the

reduction of the flux. Column E is the fraction of the period that was captured in our

Page 17

Table 6.1: Sample EEBLS Output.

data. Column F is the length of the period. Columns G and H represent the the

ingress and egress phases.

Because the EEBLS algorithm attempts to fit boxes to the data points, it will

detect any periodicity found. Consequently, not every star listed in the output will

have a transit. One criterion used to eliminate stars from the output that are not

transits is positive depth. For a transit or a binary star, the magnitude of the star will

decrease for a period of time, not increase.

As seen on Line 6 of Table 6.1, the algorithm has found the the star GSC 2083-

1870. As shown in the following graphs, this star is most likely a binary star rather

than a transit. Figure 6.1 is the light curve for GSC 2083-1870.

Page 18

Figure 6.1: Light curve for GSC 2083-1870.

Figure 6.2 is the EEBLS periodigram for GSC 2083-1870. The spikes indicate

values of the frequency of detected signals.

Page 19

Figure 6.2: Perodigram for GSC 2083-1870.

In order to more easily distinguish repeated changes in brightness, the data

points are “folded” to the period. This creates a phase diagram. If a transit is

observed, part of the curve will show a lower magnitude than the rest. Figure 6.3

illustrates the phase diagram for GSC 2083-1870 for a period of 0.3608 days. It is a

binary star because of its depth and the “V” shape of its magnitude reduction.

Page 20

Figure 6.3: Phase diagram for GSC 2083-1870 with a box superimposed on it.

Figure 6.4 is the light curve for GSC 2084-0455. It is apparent that there are

variations in the brightness of the star.

Page 21

Figure 6.4: Light curve for GSC 2084-0455.

Figure 6.5 is the EEBLS periodigram for GSC 2084-0455 showing a signal at a

frequency of 0.1703 c/d or a period of 5.6085 days.

Page 22

Figure 6.5: Periodigram for GSC 2084-0455.

Figure 6.6 is the phase diagram for GSC 2084-0455 with a period of 5.6085 days.

It is a binary star because of its depth and the “V” shape of its magnitude reduction.

EEBLS was able to fit a box to the major decrease in magnitude near 0.3 phase,

however, it did not locate the two “dips” near 0.7 and 0.9 phase.

Page 23

Figure 6.6: Phase diagram for GSC 2084-0455 with a box superimposed on it.

Figure 6.7 is the light curve for GSC 2083-0557. Major changes in the star's

brightness can be seen near MJD 17 and 32.

Page 24

Figure 6.7: Light curve for GSC 2083-0557.

Figure 6.8 is the periodigram for GSC 2083-0557 showing a signal at a

frequency of 0.21142 c/d or a period of 4.7299 days.

Page 25

Figure 6.8: Periodigram for GSC 2083-0557.

Figure 6.9 is the phase diagram for GSC 2083-0557. This diagram most likely

represents a binary star because of its “V” shape and because its depth is much

greater than 50 millimagnitudes. The superimposed box has a depth of 0.5

magnitudes and width of 0.2 of the orbital period.

Page 26

Figure 6.9: Phase diagram for GSC 2083-0557 at a period of 4.7299 days with a box
superimposed on it.

7 Conclusion

The EEBLS algorithm has aided us in finding at least 3 binary candidates, GSC

2083-1870, GSC 2084-0455, and GSC 2083-0557. The output for these are shown and

discussed in the results section.

From this evaluation, we learned that the EEBLS algorithm is useful as a guide.

It significantly narrows down the number of possible transit candidates. Many more

can be eliminated by hand from the output of the algorithm. For instance, the output

of the depth of the superimposed box on the data can be used to eliminate transit

candidates. Positive depths are not considered transit candidates because they signal

brightness increases rather than decreases.

However, the EEBLS algorithm does not produce a definitive list of transits.

The output must be further examined by hand and graphs of the data from transit and

binary candidates must be visually inspected.

One of the things that can be done to further this research is automate some of

the inspection of the EEBLS algorithm that is currently done by hand. A script can be

written to remove stars from the output with positive depth. A program could also be

written to eliminate groups of stars whose period exactly match. This is usually

caused by events on earth such as dust, clouds, or telescope imperfections.

Page 27

8 References

[1] Haswell, Carole A. Transiting Exoplanets. Cambridge: Cambridge UP, 2010. Print.

[2] http://www.nasa.gov/mission_pages/kepler/overview/index.html

[3] http://www.astromatic.net/software/sextractor

[4] A box-fitting algorithm in the search for periodic transits

Kovács, G.; Zucker, S.; Mazeh, T.

Astronomy and Astrophysics, v.391, p.369-377 (2002)

Page 28

9 Appendix A: EEBLS

//
//
//
//--
// >>>>>>>>>>>> This routine computes BLS spectrum <<<<<<<<<<<<<<
//
// [see Kovacs, Zucker & Mazeh 2002, A&A, Vol. 391, 369]
//
// This is the slightly modified version of the original BLS routine
// by considering Edge Effect (EE) as suggested by
// Peter R. McCullough [pmcc@stsci.edu].
//
// This modification was motivated by considering the cases when
// the low state (the transit event) happened to be devided between
// the first and last bins. In these rare cases the original BLS
// yields lower detection efficiency because of the lower number of
// data points in the bin(s) covering the low state.
//
// For further comments/tests see www.konkoly.hu/staff/kovacs.html
//--
//
// Input parameters:
// ~~~~~~~~~~~~~~~~~
//
// n = number of data points
// t = array {t(i)}, containing the time values of the time series
// x = array {x(i)}, containing the data values of the time series
// u = temporal/work/dummy array, must be dimensioned in the
// calling program in the same way as {t(i)}
// v = the same as {u(i)}
// nf = number of frequency points in which the spectrum is computed
// fmin = minimum frequency (MUST be > 0)
// df = frequency step
// nb = number of bins in the folded time series at any test period
// qmi = minimum fractional transit length to be tested
// qma = maximum fractional transit length to be tested
//
// Output parameters:
// ~~~~~~~~~~~~~~~~~~
//
// p = array {p(i)}, containing the values of the BLS spectrum
// at the i-th frequency value -- the frequency values are
// computed as f = fmin + (i-1)*df
// bper = period at the highest peak in the frequency spectrum
// bpow = value of {p(i)} at the highest peak
// depth= depth of the transit at *bper*

Page 29

// qtran= fractional transit length [T_transit/bper]
// in1 = bin index at the start of the transit [0 < in1 < nb+1]
// in2 = bin index at the end of the transit [0 < in2 < nb+1]
//
//
// Remarks:
// ~~~~~~~~
//
// -- *fmin* MUST be greater than *1/total time span*
// -- *nb* MUST be lower than *nbmax*
// -- Dimensions of arrays {y(i)} and {ibi(i)} MUST be greater than
// or equal to *nbmax*.
// -- The lowest number of points allowed in a single bin is equal
// to MAX(minbin,qmi*N), where *qmi* is the minimum transit
// length/trial period, *N* is the total number of data points,
// *minbin* is the preset minimum number of the data points per
// bin.
//
//==
//

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>

void eebls(int n, double t[], double x[], double u[], double v[], int nf,
 double fmin, double df, int nb, double qmi, double qma,
 /* Output variables */ double p[], double* bper, double* bpow,
 double* depth, double* qtran, int* in1, int* in2){

 // variables starting with a-h or o-z are "double"
 // implicit real*8 (a-h,o-z)
 //
 // dimension t(*),x(*),u(*),v(*),p(*)
 // These were declared arrys inside the function prototype

 double y[2000];
 int ibi[2000];
 int i, jf; /* Counters I've added, used later */
 int minbin;
 int nbmax;
 double tot;
 double rn;
 int kmi;
 int kma;
 int kkmi;
 int nb1;
 int nbkma;
 double s;
 double t1;

Page 30

 double f0;
 double p0;
 int j;
 double ph;
 int jnb;
 double power;
 int k;
 int kk;
 int nb2;
 double rn1;
 double pow;
 int jn1;
 int jn2;
 double rn3;
 double s3;

 minbin = 5;
 nbmax = 2000;
 if(nb > nbmax)
 printf(" NB > NBMAX !!\n");
 if(nb > nbmax)
 exit(0);

 tot = t[n] - t[1];
 if(fmin < 1.0/tot)
 printf(" fmin < 1/T !!\n");
 if(fmin < 1.0/tot)
 exit(0);
 //--
 //
 rn = (double)n;
 kmi = (int)(qmi*((double)nb));
 if(kmi < 1)
 kmi = 1;
 kma = qma * ((double)nb)+1;
 kkmi = (int)(rn * qmi);
 if(kkmi < minbin)
 kkmi = minbin;
 *bpow=0.0;
 //
 // The following variables are defined for the extension
 // of arrays ibi() and y() [see below]
 //
 nb1 = nb+1;
 nbkma = nb+kma;
 //
 //=================================
 // Set temporal time series
 //=================================
 //
 s = 0.0;

Page 31

 t1 = t[1];
 for(i = 1; i <= n; i++){
 u[i] = t[i] - t1;
 s = s + x[i];
 }

 s = s / rn;

 for(i = 1; i <= n; i++){
 v[i] = x[i] - s;
 }
 //
 //******************************
 // Start period search *
 //******************************
 //

 for(jf=1; jf <= nf; jf++){
 f0 = fmin + df * (double)(jf - 1);
 p0 = 1.0 / f0;
 //
 //==
 // Compute folded time series with *p0* period
 //==
 //
 //##

 for(j = 1; j <= nb; j++) {
 y[j] = 0.0;
 ibi[j] = 0;
 }

 for(i = 1; i <= n; i++) {
 ph = u[i]*f0;
 ph = ph - floor(ph);
 j = 1 + floor(nb*ph);
 ibi[j] = ibi[j] + 1;
 y[j] = y[j] + v[i];
 }

 //---
 // Extend the arrays ibi() and y() beyond
 // nb by wrapping

 for(j = nb1; j <= nbkma; j++) {
 jnb = j - nb;
 ibi[j] = ibi[jnb];
 y[j] = y[jnb];
 }
 //---

Page 32

 //===
 // Compute BLS statistics for this period
 //===

 power = 0.0;

 for(i = 1; i <= nb; i++) {
 s = 0.0;
 k = 0;
 kk = 0;
 nb2 = i + kma;
 for(j = i; j <= nb2; j++) {
 k = k + 1;
 kk = kk + ibi[j];
 s = s + y[j];

 if(k < kmi) {
 continue;
 }

 if(kk < kkmi) {
 continue;
 }

 rn1 = (double)(kk);
 pow = s*s/(rn1*(rn-rn1));

 if(pow < power) {
 continue;
 }

 power = pow;
 jn1 = i;
 jn2 = j;
 rn3 = rn1;
 s3 = s;
 }
 }

 power = sqrt(power);
 p[jf] = power;

 if(power < *bpow) {
 continue;
 }

 *bpow = power;
 *in1 = jn1;
 *in2 = jn2;
 *qtran = rn3/rn;
 *depth = -s3*rn/(rn3*(rn - rn3));

Page 33

 *bper = p0;

 }

 // Edge correction of transit end index

 if(*in2 > nb) {
 in2 = in2 - nb;
 }
}

Page 34

10 Appendix B: EEBLS Driver

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<omp.h>

#define MAXLEN 10000
#define MAX_NUM_STARS 10000
#define MAX_NUM_READINGS 10000

void eebls(int n, double t[], double x[], double u[], double v[], int nf,
 double fmin, double df, int nb, double qmi, double qma,
 /* Output variables */ double p[], double* bper, double* bpow,
 double* depth, double* qtran, int* in1, int* in2);

int main(int argc, char* argv[]){

 FILE *fptr = fopen(argv[1], "r");
 char headline[MAXLEN];
 char starNames[MAX_NUM_STARS][50];
 int numStars = 0;
 printf("Opening %s\n", argv[1]);

 // Read the first line of the file, the tops of the columns
 fgets(headline, MAXLEN, fptr);
 if(headline[strlen(headline) - 1] == '\n') /* strip trailing newline */
 headline[strlen(headline) - 1] = '\0';

 printf("Opened file: %s\n", argv[1]);

 // Read the names of the stars.
 char* data;
 int counter = 0;
 data = strtok(headline, ",");
 data = strtok(NULL, ",");
 while(data != NULL){
 strcpy(starNames[counter], data);
 counter++;
 data = strtok(NULL, ",");
 }
 numStars = counter;
 printf("Found %d stars.\n", numStars);

 // Now read all the time and brightness data;
 int numDataPoints = 0; /* Number of timeslices */
 char dataLine[MAXLEN]; /* Holds one timeslice of data */

Page 35

 double timeStamps[MAX_NUM_READINGS];
 double dataValues[MAX_NUM_STARS][MAX_NUM_READINGS];
 int i; /* Counters */
 while(fgets(dataLine, MAXLEN, fptr) != NULL){
 timeStamps[numDataPoints] = atof(strtok(dataLine, ","));
 for(i = 0; i < numStars; i++)
 dataValues[i][numDataPoints] = atof(strtok(NULL, ","));
 numDataPoints++;
 }
 int numReadings = numDataPoints;
 printf("Read %d time-values for each star.\n", numReadings);

 /*
 * At this point in the code:
 * numStars holds the correct number of stars
 * numReadings holds the correct number of readings (rows of the CSV)
 * timeStamps holds the times, the first column of the CSV
 * dataValues holds the brightness values: dataValues[i] for ith star.
 *
 * Uncomment the lines below if you want to see a printout
 */

 /*
 int j;
 for(i = 0; i < numReadings; i++){
 for(j = 0; j < numStars; j++){
 printf("%1.20lf ", dataValues[i][j]);
 }
 printf("\n");
 }
 */

 /*
 * Now we will apply the eebls function to each star.
 */
 // Set / Allocate input structures and values
 double* u = (double*)malloc(numReadings * sizeof(double));
 double* v = (double*)malloc(numReadings * sizeof(double));
 int numFreqPts = 1000; // # freq. points in which the spectrum is
computed
 double tot = timeStamps[numReadings-1] - timeStamps[0];
 double freqMin = 1.0/tot;
 double freqStep = 0.001;
 int numBins = 100;
 double qMin = 0.01;
 double qMax = 0.04;

 // Set / Allocate output structures and values
 double* p = (double*)malloc(numReadings * sizeof(double));
 double bper = 0;
 double bpow = 0;

Page 36

 double depth = 0;
 double qtran = 0;
 int in1 = 0;
 int in2 = 0;

 printf("Star\tbper\tbpow\tdepth\tqtran\tin1\tin2\tT\tIP\tEP\n");
#pragma omp parallel for num_threads(8)
 for(i = 0; i < numStars; i++){
 eebls(numReadings, timeStamps, dataValues[i], u, v, numFreqPts,

 freqMin, freqStep, numBins, qMin, qMax,
 /* Output variables */ p, &bper, &bpow, &depth, &qtran, &in1, &in2);

 double T = 2.0*bper*qtran;
 double dummy;
 printf("%s\t%f\t%f\t%f\t%f\t%d\t%d\t%f\t%f\t%f\n",

 starNames[i], bper, bpow, depth, qtran, in1, in2,
 T, modf(in1 * tot / numBins / T, &dummy), modf(in2 * tot / numBins /

T, &dummy));

 }

 return 0;
}

Page 37

11 Appendix C: SYSREM

#sysrem.py
#Application of the SYSREM by Tamuz et al.

Modified to analyze a directory of CSV files rather than a single file

Modified by Matt Heuser

Import necessary libraries

import pylab
from pylab import*
import scipy
import scipy.interpolate
import numpy
from numpy import*
from math import*
import csv
import os
import string

Read the CSV file into an array

indirname = raw_input("Please specify the name of the input directory: ")
print "Please wait..."

indir = "./" + indirname + "/"
dirlist = os.listdir(indir)

for filename in dirlist:
 sfilename = filename.rstrip(".csv")
 v = genfromtxt(indir + filename, delimiter = ",", filling_values = 0.0,
skip_header = 1)

 ## Use the length of v to set the number of stars N-3 (first three
columns have time, airmass, zeropoint
 N = len(v[0]) #We want the length of one row of v to get the number of
columns (i.e. stars)

 ## Take a slice (second column) which contains all the air masses. These
are functions of date but are the same for each star N
 a = v[:,2]

Page 38

 ## Pull out MJD column using a slice of v:
 MJD = v[:,0]

 ## Use the length of a to set the number of measurements M per star (i.e.
rows)
 M = len(a)

 ## Read the zero points for each time into an array by slicing v
 zp = v[:,1]

 ## Create arrays to handle the calculations

 c_old = zeros(N, float) #This is the extinction coefficient
 c_new = zeros(N, float) #This is the redundant extinction coefficient
used iteratively
 c_dif = zeros(N, float)
 a_old = zeros(M, float) #airmass used for iteration
 a_new = zeros(M, float) #airmass used for iteration
 a_dif = zeros(M, float)
 s = zeros((M,N), float) #This contains the errors (standard deviations)
for each measurement so it is an MxN array
 m = zeros((M,N), float) #This contains the observed magnitudes for
each time
 m2 = zeros((M,N), float) #This will contain the corrected magnitudes
for each time
 r = zeros((M,N), float) #These are the residuals from fitting the data
(magnitude vs. airmass) to a straightline
 mean = zeros(N, float)

 ## Calculate the error in the measurements for each star and place them in
the NxM array
 ##I simplified this so it didn't create an intermediate array
 for i in range(0,M): #Switched N and M in this nested loop (I think our
array is the transpose of the article's). For M dimension, we don't want to
skip the first three elements, changed below, too
 for j in range(3,N):
 if v[i,j]>0 or v[i,j]<0: s[i,j] =
2.5/log(10.0)/sqrt(60.0*pow(10.0, -(v[i,j]-zp[i])/2.5)) #calculate
uncertainty in star i measurement
 else: s[i,j] = 999999 #Since nan was not being handled, I set the
empty values to 999999 and just skip that whenever it comes up later

 ##I think we need the residuals before doing the fitting
 for j in range(3, N):
 sum_v=0.
 count=0.
 for i in range(0,M):
 if v[i,j]>0 or v[i,j]<0:
 m[i,j] = v[i,j]
 sum_v+=v[i,j]

Page 39

 count+=1.
 mean[j]=sum_v/count
 for i in range(0,M):
 r[i,j]=v[i,j]-mean[j] #subtracts the mean magnitude from each
measurement, giving residual

 for j in range(3, N):
 a_temp=[] #create temp arrays so as not to include the empty elements
of r
 r_temp=[]
 for i in range (0,M):
 if r[i,j]>0 or r[i,j]<0:
 a_temp.append(a[i])
 r_temp.append(r[i,j])
 polycoeffs = scipy.polyfit(a_temp, r_temp, 1) #makes a straight line
fit to the data f(a,r)
 c_old[j] = polycoeffs[0] #stores the slope of the line as the
extinction coefficient

 ##Set differences to be large before entering interation loop
 for j in range(3,N): c_dif[j]=1e9
 for i in range(0,M): a_dif[i]=1e9

 avg_c_dif=sum(c_dif)/len(c_dif)
 avg_a_dif=sum(a_dif)/len(a_dif)
 a_old=a
 count=0

 ##Iterative process to minimize airmass and coefficient of extinction
 while avg_c_dif>0.001 or avg_a_dif>0.001: #calculates the new extinction
coefficients and airmasses until there is little change
 for j in range(3, N): #extinction coefficients
 denom = 0.
 coeff = 0.
 for i in range(0, M):
 if s[i,j] != 0 and s[i,j] != 999999: denom +=
a_old[i]*a_old[i]/(s[i,j]*s[i,j])
 for i in range(0, M):
 if s[i,j] != 0 and s[i,j] != 999999:
 coeff += r[i,j]*a_old[i]/(s[i,j]*s[i,j])
 c_new[j]=coeff/denom
 c_dif[j]=abs(c_new[j]-c_old[j]) #determines the amount of change
in this iteration
 c_old[j]=coeff/denom

 for i in range(0,M): #airmasses
 denom = 0.
 coeff = 0.
 for j in range(3, N):
 if s[i,j] != 0 and s[i,j] != 999999:

Page 40

 denom += c_old[j]*c_old[j]/(s[i,j]*s[i,j])
 for j in range(3, N):
 if s[i,j] != 0 and s[i,j] != 999999:
 coeff += r[i,j]*c_old[j]/(s[i,j]*s[i,j])
 a_new[i]=coeff/denom
 a_dif[i]=abs(a_new[i]-a_old[i])
 a_old[i]=coeff/denom
 avg_c_dif=sum(c_dif)/(N-3) #average change per element in this
iteration
 avg_a_dif=sum(a_dif)/len(a_dif)
 print count,avg_c_dif,avg_a_dif
 count+=1

 for i in range(0,M):
 for j in range(3,N):
 r[i,j]=r[i,j]-c_old[j]*a_old[i]#subtracting the systematic error
from the residual
 m2[i,j] = r[i,j] + mean[j] #Corrected 27 Nov. 2011

###
 for j in range(3, N):
 d = v[:,0]
 m3 = m2[:,j]
 pylab.subplot(211)
 pylab.figure(1)
 #spl = scipy.interpolate.splrep(d, m3, s=0.4*std(m3)) #reduced from
0.5 on 27 Nov. 2011
 #y = scipy.interpolate.splev(d, spl)
 #m2[:,j] = y
 y = m2[:,j]
 #pylab.plot(d, y ,'bo') #plot magnitude as a function of time
 #pylab.errorbar(d,y, yerr = std(y), fmt = 'bo')
 #pylab.plot(v[:,0], m[:,j], 'ro')
 pylab.errorbar(v[:,0],m2[:,j], yerr = std(m2[:,j]), fmt = 'bo')
 #pylab.ylim(mean[j] - 0.05, mean[j] + 0.05)
 ax = gca()
 ax.set_ylim(ax.get_ylim()[::-1]) #reverse the y-axis direction
 pylab.grid(True)
 f = file(indir + filename)
 reader = csv.reader(f)
 name = reader.next()[j]
 f.close()
 pylab.title("SYSREM " + str(name))
 pylab.xlabel("MJD")
 pylab.ylabel("magnitude")
 pylab.grid(True)
 pylab.subplot(212)
 #pylab.plot(v[:,0], m[:,j], 'ro')

Page 41

 #pylab.plot(v[:,0], m2[:,j],'bo')
 #pylab.errorbar(v[:,0], m2[:,j], yerr = std(m2[:,j]), fmt = 'bo')
 pylab.errorbar(v[:,0], m[:,j], yerr = std(m[:,j]), fmt = 'ro')
 ax = gca()
 ax.set_ylim(ax.get_ylim()[::-1]) #reverse the y-axis direction
 pylab.xlabel("MJD")
 pylab.ylabel("magnitude")
 pylab.grid(True)
 if not os.path.exists("./sysrem/" + sfilename + "/"):
 os.makedirs("./sysrem/" + sfilename + "/")
 pylab.savefig("./sysrem/" + sfilename + "/" + "SYSREM-" + str(name))
 #pylab.show()
 pylab.clf()

 ## Save data to a csv file
 if not os.path.exists("./sysrem/"):
 os.makedirs("./sysrem/")
 out = open('./sysrem/' + filename, "w+")
 print >> out, "MJD",",", "\t",
 for j in range(3,N):
 f = file(indir + filename)
 reader = csv.reader(f)
 name = reader.next()[j]
 f.close()
 print >> out, "\t", name, ",","\t",
 print >> out, "\n",
 for i in range(0, M):
 print >> out, MJD[i], ",",
 for j in range (3, N):
 #if j != 1 or j!= 2:
 print >> out, m2[i,j], ",",
 print >> out, "\n",
 out.close()
 print filename + "...done"

Page 42

